Jumat, 04 Juni 2010

Fisika Nuklir dan Fisika Partikel _ Romulus Godang (Fisika USU (Synchrotron Laboratory, Universitas Cornell))

Pendahuluan

Tulisan ini menjabarkan tentang sifat-sifat partikel elemen dalam subatom sekaligus mempelajari gaya yang menyebabkan suatu partikel elemen dapat bergabung dengan partikel elemen yang lain juga yang memisahkan setiap partikel elemen. Pembahasan dititikberatkan pengetahuan dasar ilmu fisika nuklir dan fisika partikel yang saat sekarang sangat berkembang dalam dunia ilmu pengetahuan. Penulis berusaha untuk mejelaskan isi tulisan ini secara sederhana sehingga dapat dijangkau oleh kalayak umum. Tulisan ini juga bertujuan untuk menjelaskan bagaimana sebenarnya benda dalam alam semesta ini tersususn oleh elemen terkecil. Selain hal diatas, tulisan ini juga didasarkan pada perkembangan ilmu fisika nuklir dan fisika partikel dalam waktu 50 tahun terakhir. Selanjutnya tulisan ini menerangkan bahwa proton dan neutron bukan lagi merupakan elemen partikel terkecil sebagai penyusun inti atom.

Sejarah dan Perkembangan Partikel Elemen

Pembahasan dan masalah yang berkaitan dengan partikel elemen dewasa ini merupakan suatu perhatian khusus yang sangat menarik bagi para ahli ini, khususnya para ahli fisika baik dalam bidang percobaan maupun dalam bidang teori. Partikel elemen merupakan partikel dasar pembentuk seluruh zat yang ada dalam alam semesta, termasuk air, udara, api, bumi beserta isinya dan seluruh jagat raya. Pengkajian dan pengetahuan akan berbagai sifat partikel dasar di atas merupakan suatu gejala alamiah yang mulai populer dikenal pada abad ke-19, yaitu setelah Democritus mempublikasikan teori tentang ATOM''.

Berdasarkan ilmu fisika klasik, atom merupakan suatu zat yang tidak dapat dibagi lagi atas komponennya dan dianggap sebagai suatu titik bermassa. Sifat di atas sudah sangat dikenal dalam ilmu mekanika klasik dan sudah sangat jelas pembahasannya oleh Hukum Mekanika Newton. Pengetahuan tentang atom terus berkembang dan pada abad ke-20 pandangan dan pengetahuan fisika klasik tentang atom mulai luntur setelah ditemukannya suatu gejala alamiah lain yang dikenal dengan Gejala Elektromagnetik. Secara langsung gejala alamiah ini merupakan suatu fakta dan jawaban yang mengubah pandangan dan pengetahuan ilmu fisika klasik tentang atom. Pada masa tersebut para ahli sudah dapat menyimpulkan bahwa atom bukan lagi merupakan suatu zat terkecil yang tidak dapat diuraikan lagi atas komponennya. Sebagai pengetahuan lanjutan saat itu telah dikenal adanya partikel pembentuk atom yaitu proton dan neutron dalam inti atom dan dikelilingi oleh elektron. Partikel-partikel elemen di atas sudah sangat dikenal dan merupakan partikel yang stabil. Proton dan neutron sebagai pembentuk inti atom juga disebut sebagai nukleon. Penelitian tentang partikel elemen terus berkembang dan pada tahun 1950-an dunia pengetahuan tentang partikel elemen ini mengalami penyempurnaan yang sangat baru dimana proton, elektron, dan partikel elemen lain tidak merupakan partikel dasar yang sebenarnya tetapi terdiri dari partikel elemen yang lebih kecil lagi yang sekarang disebut KUARK''.

Mungkin muncul pertanyaan dalam pikiran pembaca. Bagaimana dan apa sumber yang dapat menghasilkan partikel elemen tersebut? Di sini penulis mencoba menjelaskan secara sederhana tentang pembentukan beberapa partikel elemen yang sudah umum dilakukan oleh para ahli percobaan di laboratorium penelitian. Berkas elektron yang mengandung jutaan partikel elektron dapat dengan mudah dihasilkan dengan cara memanaskan sebatang logam yang dihuhungkan dengan kutub negatip dari sumber listrik (dalam hal ini disebut juga sebagai kutub negatip atau katoda) di bawah titik leburnya. Selanjutnya berkas elektron tersebut dapat diarahkan ke suatu arah tertentu dengan cara meletakkan sebatang logam lain disekitarnya yang telah dihubungkan dengan kutub positip dari sumber listrik (disebut juga sebagai kutub positip atau anoda). Dalam kehidupan sehari-hari manfaat penghasilan berkas elektron ini sudah lama kita pergunakan misalnya pada tabung televisi di rumah dimana dengan pemanfaatan partikel elektron ini dan perlengkapannya kita dapat melihat gambar melalui layar. Berkas elektron yang dihasilkan dapat pula menghasilkan berkas proton dengan cara membombardir molekul hidrogen. Dengan perkataan lain bila kita tabrakkan berkas elektron pada target molekul hidrogen maka kita akan memperoleh jutaan proton. Dengan demikian secara sederhana dapat dikatakan bahwa satu tangki hidrogen dapat disamakan dengan satu tangki proton.

Sumber Partikel Elemen yang Populer Saat Sekarang

Saat kini kita mengenal tiga sumber besar penghasil berbagai partikel elemen antara lain sinar kosmik, reaktor nuklir dan pemercepat partikel.
Angkasa bumi pada dasarnya mengalami pembombandiran oleh partikel yang berenergi tinggi misalnya proton yang berasal dari luar angkasa. Ketika partikel-partikel yang berenergi tinggi tersebut bertubrukkan dengan atom-atom pada bagian lapisan udara terluar akan dihasilkan hujan partikel (karena berbentuk seperti hujan). Sumber partikel seperti ini disebut sebagai SINAR KOSMIK''. Pada umumnya sebagian besar partikel-partikel yang dihasilkan dalam sinar kosmik tersebut adalah partikel elemen lain yang disebut sebagai MUON'' ( ). Muon adalah partikel elemen yang bermuatan negatip seperti halnya elektron, tetapi muon memiliki massa yang jauh lebih besar dari elektron. Berdasarkan hasil penelitian muon memiliki massa sekitar 200 kali lebih besar dari massa elektron.

Reaktor nuklir dewasa ini dapat menghasilkan berbagai jenis partikel misalnya dengan cara meluruhkan zat yang bersifat radioaktif. Peluruhan zat radioaktif secara umum dapat menghasilkan neutron, sinar alpha ( ) yang merupakan gabungan dasar dari partikel neutron dan partikel proton, sinar beta ( ) yang terdiri dari elektron dan sinar gamma ( ) yang disebut juga FOTON''.

Pemercepat partikel merupakan suatu rangkaian peralatan yang dapat menaikkan kecepatan partikel saat bergerak. Salah satu cara untuk mempercepat partikel adalah dengan menginjeksikan energi dan mengatur besarnya elektromagnetik yang dipergunakan pada berkas partikel sehingga partikel dapat mencapai energi kinetik yang diharapkan dalam pergerakkannya. Saat sekarang telah dapat dihasilkan berbagai berkas sinar partikel misalnya berkas sinar positron, berkas sinar antiproton, berkas sinar muon dan lain-lain.
Beberapa pemercepat partikel terbesar dunia yang masih aktip dan masih menghasilkan data penelitian sampai sekarang antara lain:

1. Stanford Linear Accelerator Center (SLAC), California, USA.
2. Cornell Electron Synchrotron (CLEO), New York, USA.
3. The Continuous Electron Beam Accelerator Facility (CEBAF), Virginia, USA.
4. National Laboratory for High Energy Physics (Koh-Ene-Ken) (KEK), Ibaraki, Jepang.
5. Conseil Europeen puor la Recherche Nucleaire (CERN), Geneva, Switzerland.
6. Deutches Elektromen Synchrotron (DESY), Hamburg, Jerman.
7. Serpukhov Proton Synchrotron, Sepukhov, Russia.

Lepton dan Quark

Lepton adalah salah satu golongan partikel fundamental yang terdiri dari elektron ( ) sebagai partikel bermuatan negatip yang paling ringan, muon ( ) sebagai partikel bermuatan negatip, bermassa sekitar 200 kali lebih besar dari massa elektron dan tau ( ) sebagai partikel bermuatan negatip, bermassa sekitar 3500 lebih besar dari massa elektron. Selain ketiga jenis partikel elemen di atas terdapat pula tiga partikel elemen yang lain yang termasuk dalam lepton yaitu tiga jenis NEUTRINO''. Setiap neutrino diasosiasikan dengan setiap jenis partikel elemen di atas dan diberinama masing-masing sebagai neutrino-elektron ( ), neutrino-muon ( ) dan neutrino-tau ( ). Neutrino merupakan golongan lepton yang unik dimana selain tidak memiliki muatan listrik, neutrino juga tidak memiliki massa. Berdasarkan tata cara penggolongannya, lepton dapat dibagi atas tiga generasi yaitu:

• dan generasi pertama
• dan generasi kedua
• dan generasi ketiga

Kuark merupakan partikel fundamental yang memiliki muatan listrik kelipatan pecahan dari muatan listrik elektron yaitu +2/3e dan -1/3e. Sampai saat sekarang kita mengenal 6 jenis kuark yang terdiri dari tiga generasi yaitu:

• Up Kuark ( u ) dan Down Kuark ( d ) generasi pertama
• Strange Kuark ( s ) dan Charmed Kuark ( c ) generasi kedua
• Beauty Kuark ( b ) dan Top Kuark ( t ) generasi ketiga

Kuark u, c, t masing-masing memiliki muatan listrik sebesar +2/3 kali muatan listrik elektron sedangkan kuark d, s, b memiliki muatan listrik sebesar -1/3 kali muatan listrik elektron. Penemuan besarnya muatan suatu partikel dapat dilakukan dengan cara menginjeksikan partikel bermuatan melalui detektor khusus yang lebih dikenal dengan Cloud Chamber'' atau Bubble Chamber'' dimana dalam hal ini partikel bermuatan yang diinjeksikan akan menubruk elektron-elektron dalam gas sebagai bahan medium pengantara pada Chamber sehingga elektron-elektron tersebut akan terpental dari orbitnya dan akan membentuk lintasan tertentu relatif terhadap posisi partikel bermuatan yang diinjeksikan semula. Secara rumus empiris, ketebalan lintasan yang dibentuk elektron-elektron diatas adalah berbanding lurus dengan kuadrat muatan partikel dan berbanding terbalik dengan kuadrat kecepatan yang dimiliki partikel bermuatan. Oleh sebab itu pada penelitian Fisika Energi Tinggi, kecepatan partikel bermuatan misalnya dalam hal ini adalah elektron dapat mencapai kecepatan yang sama yaitu kecepatan cahaya, sehingga dapat dikatakan bahwa setiap elektron yang membentuk lintasan pada chamber akan menghasilkan ketebalan lintasan yang sama. Maka dari hasil percobaan dapat kita ketahui bahwa bila ketebalan suatu lintasan partikel bermuatan lebih kecil dari ketebalan lintasan yang dibentuk oleh elektron berarti muatan partikel yang diteliti adalah lebih kecil dari muatan elektron.

Secara umum kuark disimbolkan dengan huruf q sedangkan anti-kuark disimbolkan dengan . Jika suatu partikel terdiri dari tiga kuark dalam susunannya maka disebut sebagai BARYON'' sebagai contoh adalah proton yang terdiri dari kuark uud sedangkan neutron terdiri dari kuark udd, maka proton dan neutron disebut juga sebagai baryon. Selanjutnya jika suatu partikel terdiri dari pasangan satu kuark dan anti-kuark maka disebut sebagai MESON''. Contoh meson yang sudah diketahui adalah meson ( pion ) terdiri dari pasangan kuark u dan anti-kuark . Meson yang terdiri dari pasangan kuark c dan anti-kuark . Baryon dan meson dapat pula dikelompokkan sebagai HADRON''. Hingga tulisan ini dibuat belum ada penelitian yang dapat berhasil menemukan kuark sebagai partikel fundamental yang dapat berdiri sendiri dengan perkataan lain belum atau tidak dapat dihasilkan satu kuark secara utuh. Telah diketahui bahwa gaya interaksi yang kuat merupakan gaya yang menghubungkan satu kuark dengan kuark yang lain dan sebagai media pengantarnya disebut sebagai GLUON'' yang merupakan pembawa yang tidak bermassa.
Detektor CLEO
Pembuatan suatu detektor untuk meneliti gejala-gejala alam untuk meneliti partikel elemen merupakan suatu projek yang sangat mahal dan melibatkan banyak para ahli fisika dan ahli teknik. Detektor CLEO yang terletak di kota Ithaca, New York merupakan salah satu detektor yang sukses dan berkembang saat sekarang, Detektor ini di bawah koordinasi Universitas Cornell dan bekerjasama dengan lebih kurang 22 Universitas terkenal lainnya di Amerika. Dana projek raksasa ini sebagian besar didukung oleh Departemen Energi dan Lembaga Sains Nasional Amerika. Saat sekarang projek ini melibatkan 220 orang ahli fisika yang sedang melakukan berbagai jenis penelitian untuk menjawab dan merumuskan tantangan dalam perkembangan ilmu fisika nuklir dan fisika partikel.

Banyak jenis partikel yang terlibat dalam penelitian yang dilakukan CLEO Collaboration sehingga detektor CLEO dirancang memiliki beberapa jenis komponen dengan fungsi yang berbeda-beda. Pada dasarnya 2/3 partikel menghasilkan muatan listrik dan partikel bermuatan ini dapat ditentukan dan dianalisa melalui suatu komponen yang disebut Drift Chamber''. Prakteknya yang diukur bukanlah partikel bermuatan secara langsung tetapi lintasan yang dibentuk oleh jenis partikel bermuatan tertentu. Selanjutnya jenis partikel bermuatan tersebut dapat dideteksi melalui komponen lain yang disebut Time of Flight'' sedangkan penentuan partikel muon dipergunakan data yang diperoleh dari komponen yang terletak di bagian akhir detektor CLEO ini yang disebut pula dengan Muon Chamber''.

Selain partikel bermuatan yang melalui detektor juga diketahui jenis partikel lain yang tidak bermuatan atau yang lebih sering disebut dengan partikel netral. Dalam hal ini penentuan dan penganalisaan partikel netral merupakan suatu pekerjaan yang lebih sukar dan rumit jika dibandingkan dengan analisa partikel yang bermuatan. Sebagai contoh adalah partikel Neutrino yang merupakan jenis partikel netral yang tidak mungkin terdeteksi secara lansung sampai saat selesainya tulisan ini. Sedangkan partikel netral lainnya seperti partikel merupakan partikel yang sangat sulit dideteksi secara langsung tapi tugas ini merupakan hal yang mungkin untuk dilakukan. Partikel netral yang lebih mudah dideteksi adalah Foton, K-Long dan K-Short. Khusus untuk partikel foton secara langsung dapat ditentukan dan dianalisa dengan alat yang disebut Cesium Iodida ( CsI ) Crystal Calorimeter yang menutupi bagian luar dari drift chamber. Pada detektor CLEO terdapat 8000 kepingan kristal CsI seperti terlihat pada gambar. Setiap kristal akan menyerap sebagian energi partikel yang melaluinya. Distribusi energi yang dihasilkan kristal ini dapat menentukan adanya foton yang melalui kristal dan sekaligus menentukan jumlah foton yang dihasilkan. Prosedur ini merupakan cara yang sangat penting sebab secara umun terdapat 5 jenis partikel netral yang dihasilkan oleh setiap satu event. Dari kelima jenis partikel netral ini, partikel merupakan partikel yang dominan dihasilkan.

Selasa, 06 April 2010

Characteristic sound


It was said if it would be no mountain that erupted the wild animals that live around the mountain is normally conduct mass evacuation ... these wild animals have "advanced detectors" that help them save themselves from the raging volcano. Well, more powerful than man-made seismograph he2 ... maybe yes ... you guessed wild animals are displaced due to the temperature of the area surrounding the volcano is high enough. In fact the temperature factor has no effect ... yesterday when Mount Merapi coughing;), many animals such as tigers, deer, wild boar (not a piggy bank but wild boar) and colleagues did not conduct a mass evacuation ... how to explain this? why the animals can escape before the devastating volcano will erupt?
Answer the above questions related to the sound wave sound wave ...? What to do? on this matter will be thoroughly peeled gurumuda at the end of this article. Before reviewing peculiarities of animals, we first discuss the characteristics of typical alias sound ... the sound characteristics associated with the sensation that is felt by every listener ...
Loudness

Declare loudly loudness or softness of the sound ... the sound of trucks produced louder than the sound produced by a motorcycle. In this case the noise generated by trucks louder than the noise generated by motorcycles. The sound produced by aircraft noise louder than that produced by cars ... there are many other examples ... In physics, the loudness actually related to energy or intensity of the wave. If we are talking about the one-dimensional wave (eg, one-dimensional wave = wave on a string) then the more important when we discuss energy. Conversely, if we talk about the wave of three-dimensional (ie three-dimensional wave = waves of sound or seismic waves) then the more important when we discuss the intensity (I) waves. In the subject of energy, power and intensity of wave mechanics, has been described in a short length of intensity. Intensity (I) represents the wave energy carried by the wave per unit time through a unit area perpendicular to the direction of wave propagation. Since the energy per unit time is power then it could be said that intensity is the power carried by the wave through a unit area perpendicular to the direction of wave propagation. Intensity depends on the amplitude, frequency, wave speed and density of the medium.

The relationship between loudness and intensity of the sound waves will be discussed more fully in the next episode ...

Pitch (pitch) If you are struggling with the world of music would be familiar with this strange term. Pitch or the pitch is a term used to describe the height of a sound. The sound of the flute is more "high" while the drums sound more "low". In this case, the sound of the flute pitch higher pitch than the sound of drums. String melody sound more "high" while the bass strings sound more "low". In this case the string melody pitch sounds higher pitch than the sound of the bass strings.

Physical quantities that determine the pitch is the frequency. The higher the frequency the higher the sound pitch. Conversely the lower the sound frequency the lower the pitch. Btw, pitch is also affected by the amplitude. If we heard a sound that has the same frequency but different amplitudes, the sounds which have a larger amplitude although the sound louder but lower pitch tone.

Alias sound quality tone color (timbre)
For example, if we play the guitar and piano with the loudness and pitch the same, we can still distinguish the two sounds are produced by the instrument. In this case, although the same loudness and pitch tone but we could still distinguish the sound of guitar and piano sounds. This difference is known as the sound quality. In the world scene;), usually used in terms of color tone or timbre.

Range of human hearing One has previously described the sound characteristics, namely height. Physical quantities that determine the altitude is the frequency. You may have heard the sound of melodic guitar and bass guitar sound. The sound of the guitar melodies are more "high" because the frequency of the resulting string guitar melody higher, otherwise the bass guitar sound more "low" because of the frequency generated is also lower. The higher the frequency, the higher a sound, conversely the lower the frequency, the lower the sound. Btw, if the frequency is too low, so our ears could not hear the sound. Likewise, if the frequency is too high then we are no ear could hear.
On average, humans can hear sounds ranging in frequency between 20 Hz to 20,000 Hz. Sound wave frequency is lower than 20 Hz or higher than 20,000 Hz can not be heard by human ears. Frequencies below 20 Hz, known as infrasonic, while frequencies above 20,000 Hz known as ultrasound. Usually if someone is getting older so he also could no longer hear high frequency sounds. Earshot of parents;) ranged from 20 Hz to 10,000 Hz. Kaecian deh;) There are stories that are not interesting in this regard. It was said at the london school children's sms each other when the teacher was giving a lesson. Because the sms tones can be heard by the teacher then the teacher told them not to not sms each other's. Pupils who are then replaced nakal2 sms tone high frequency so that teachers can not hear. Eventually the students who nakal2 but the smart can bersms ria;) if yes hpnya disilent in Indonesia alone, so just why bother:)

Although humans can not hear sounds that have frequencies above 20,000 Hz (ultrasonic frequency), some animals can hear ultrasonic sound frequency. For example bats can hear sounds in frequency of 100,000 Hz. Or a dog can hear sounds in frequency to 50.000 Hz. Examples of animals that can hear ultrasonic sound wave frequency is the cat, rat, grasshopper. Other examples can you add through the comments column ... The crickets stopped singing ... this is because the crickets can hear low frequency sounds (footsteps we produce low-frequency vibrations). Infrasonic waves generated by earthquakes usually teknonik, volcanic earthquakes (volcanic eruption), thunder, heavy machinery vibration ... although the frequency infrasonic sound waves can not be heard by humans or certain animals but can menimbukan severe damage to human or animal body or it can destroy buildings . Infrasonic waves can demolish the building or cause damage to the body by way of resonance.
He said yesterday three days before the earthquake in Sichuan, China, a lot of frogs who paraded on the street. The frogs are trying menjahui city that became the epicenter. Many people do not know why the frogs are paraded on the street. It turned out that three days later menguncang devastating Sichuan earthquake, china. I suspected it was caused by resonance effects of tectonic earthquake vibrations. Before the devastating earthquake occurs, certain small-scale earthquakes have occurred. Resonance effects caused by these small-scale earthquake vibrations would be felt by the frogs so that they fled from their respective place of residence;) The same thing happened before the devastating volcanic eruption. Usually the animals escaped from his residence in the vicinity of the volcano, before the devastating eruption of the volcano. Resonance of volcanic tremor is very disturbing animals so the animal is trying to save themselves. Btw, this is just my reasoning alone ... I do not have a reference that explains this. You can put your opinions through the comment ... do not forget to explain in a scientific and reasonable.
Reference

Giancoli, Douglas C., 2001, in Physics Volume I (translation), Book publisher

Halliday and Resnick, 1991, in Physics Volume I, Translations, New York: publisher

Tipler, PA, 1998, Physics for Science and Engineering, Volume I (translation), Jakarta: Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, University Physics (translation), Book publisher

Minggu, 04 April 2010

Cheap Alternative Fuel Diesel Fuel Substitute: Stay Planted!

Krisna
Saturday, 19 - February - 2005,

Yesterday afternoon to evening, the auditorium of the School of Business and Management (SBM) ITB seemed satisfied by many researchers, ITB, government officials, parliament members, journalists, researchers from LIPI and other universities, and researchers from Japan. Dated February 18, 2005, new fuel is introduced environmentally friendly. Fuel that was developed by researchers at the ITB and the Mitsubishi Research Institute is just using jatropha oil extraction yield is scientifically known as jatropha. Oil from jatropha seeds can be used as a direct substitute for diesel oil used for diesel engines.

The development of this research project started in 2004, with sponsored by NEDO, New Energy and Technology Development Organization. As a regional supplier of castor seeds, NTT was chosen because it was a lot of Jatropha grows wild in the province. During this time, besides growing wild in a lot of bare land in the province, by the people of NTT, jatropha plant is only used as a fence. "I used could also be an instrument of enlightenment," said Frans Lebu Raya, the present Deputy Governor of NTT, "Seeds of jatropha tingling like satay and then burned." In culture, the gourd is already familiar with the people of NTT. In addition to this, jatropha is also known Naturalife Greenworld treatment resources, especially for skin diseases, relieves pain, and laxatives. However, the presence of petrol and diesel are subsidized to make the community NTT Indonesian society overall-and-forget plants that store large potential for this.

Results of performance tests of castor oil is indeed amazing. Pure castor oil (straight jatropha oil) BD 100 will have the same performance with diesel oil. Party central government itself, yesterday, among others, represented by Dr. Yogo Pratomo, Director General of the Department of Energy and Mineral Resources, Directorate General of Electricity and Energy Utilization and Dr. Luluk Sumiarso, Jentral Secretary Ministry of Energy and Mineral Resources, express promise that the government will assist the development and dissemination of this alternative fuel. This was mainly supported by the production of castor oil prices that compete with the price of diesel fuel without subsidies. Prices of castor oil production is maximum USD 1000/kg, meanwhile, the price of diesel fuel without subsidies reach USD 1600/kg. "What needs to consider the stability of oil supplies certainly stay at this distance," said Yogo.


Mindu Sianipar, chairman of the House of Representatives Commission IV that one of its tasks manage the problem of agriculture is also very supportive of and grateful to the researchers from ITB and Mitsubishi. "This is not just a business issue," said Mindu, "but also help the villagers." On this occasion, Mindu also expect the use of castor oil used as fuel for diesel-powered fishing vessels. The important thing to consider also is the legal umbrella for this product. "Oil and Gas Law will make Pertamina to intervene in this product," said Mardjono, a member of another House of Representatives Commission IV, "It should benefit this product can be used as much as possible to improve the welfare of poor rural communities."

Research headed by Dr. Robert Manurung, from the Department of Chemical Engineering, ITB is one of several energy alternatives that are developed by ITB "We are also developing other alternative fuels. For example, biodiesel and fuel ethanol from cassava," said Dr. Faith Reksowardojo, chief Motor Fuels and Propulsion Laboratory, Mechanical Engineering Department of ITB, which is also a member of the research team was castor oil.

According to Robert, the main advantage is its processing of castor oil is cheap and simple. "Biodiesel machines were difficult to operate," he said, "The installation could not be done by the farmers. With castor oil, do not need to replace the engine, just with ordinary diesel engines. Replace all diesel oil with diesel, that's all."

Another major contribution of the ITB for the nation was revealed yesterday. In the middle of the issue of reduction in fuel subsidies, cheap fuel and environmentally friendly work of researchers of this ITB will provide a fresh breeze for the Indonesian people, especially people who depend on a weak economy with diesel, such as motor boats and fishermen to farmers for rice milling. In the meantime, bare land, particularly in parts of eastern Indonesia will be able to function as an organized distance cultivation areas. Obviously this will increase the welfare of the people in the area. Do not need mine anymore. Simply plant it!

Sea water: alternative fuels


Someday, you may see a seal that surrounds many refueling stations. That's because it's not the smell of gasoline, but rather the smell of the beach is more pronounced at the pump.

John Kanzius, 63 years old, has succeeded in creating alternative fuels from seawater. By coincidence, this broadcast technicians discovered something amazing. In the right conditions, sea water can be lit with extraordinary temperature. With some modifications, did not rule in the future, this can be made as an alternative fuel for motor vehicles.

Kanzius journey into the surprising inspiration began when she was diagnosed with leukemia in 2003. Faced with exhausting chemotherapy treatment, she chose to try to find a better alternative in destroying cancer cells. Then in comes with a tool Radio Frequency Generator (RFG), a machine that produces radio waves and memancarkannya to a particular area. Kanzius use RFG to heat small metallic particles inserted into tumors, destroying tumor cells without damaging normal cells.

But, what is the link between cancer with sea water fuel?

During experiments with RFG, he found that RFG can cause water to be around a test tube to condense. If the RFG could cause water to condense, this should be also to separate salt from sea water. Perhaps, this can be used to download desalinitasi seawater. An old proverb about the sea, "Water, water everywhere, and no one can tetespun drunk."

Some countries experiencing drought and the majority of people suffering from hunger, while 70% of the earth is the ocean that in fact is the water. An effective method for removing salt from sea water could save countless lives. So no wonder if Kanzius tried his instruments for the purpose of RFG desalinitasi seawater.

In the first test, he noticed a surprising side effect. When he directed his RFG on the jar containing sea water, water flowed like a boil. Kanzius then test again. Currently with the burning of paper and touching tisue into the sea water being in firing by the RFG. He was very surprised, sea water in the tubes remain lit on fire and ignited while the RFG.

At first news of this experiment is considered a lie, but after chemical experts from Penn State University conducted this experiment, it turns out it was true. RFG can burn seawater. The flame can reach 3000 degrees Fanrenheit and burned during the RFG ignited.

Then how is the sea water can burn? And what if the throw cigarette butts into the sea does not cause the earth to explode?

This is all related to hydrogen. Under normal circumstances, the composition of sea water has sodium chloride (salt) and hydrogen, oxygen (water) is stable. Owned radio waves from Kanzius RFG disrupt that stability, decided that there are chemical bonds in seawater. This release volatile hydrogen molecules, and the heat out of the RFG trigger and burn rapidly.

So will the future will be a car or motorcycle use sea water instead of gasoline?

If this technology could actually be realized, the world has no need to worry anymore with the energy crisis.

Bravo ..!!! science

source: http://auto.howstuffworks.com/

Kamis, 01 April 2010

Night Watch Meteor Showers

If not cloudy skies this evening will be decorated with light coming from the Orionid meteor shower. Performing such nature will be evident before the sun rises.

The annual Orionid meteor shower is created when the Earth crossed the path of Halley's Comet. At that point there are bits of incandescent comet material and looks like a light rain when it entered Earth's atmosphere. Most of the remaining material the size of a pea, though most of the grains of sand.

"Grains of comet dust collide with the atmosphere that will provide dozens of meteor showers every hour," said Bill Coke from meteoroids NASA research centers, Tuesday (20/10).

However, people living in cities will see very little light because the meteors "falling stars" was beaten by city lights. The best location to see the meteor shower is in an area that is not polluted with the sunny light.

The best time to watch between 01:00 o'clock in the morning until the wee hours. That's when the Earth was exactly where we stand on the path of material in orbit so that the sky would be "captured" our atmosphere. However, some meteors may be visible before midnight.

Orionid meteor shower that becomes the foreground of the Orion star cluster, including decorating the most beautiful night sky. "Since 2006, Orionid a stunning spectacle with 60 or more meteors per hour," says Cooke. (kompas.com)

Rabu, 31 Maret 2010

Earthquake


An earthquake is a vibration or shock that occurs on the surface of the earth. Ordinary earthquakes caused by the movement of the earth's crust (plates of the earth). The word earthquake is also used to indicate the origin of the earthquake occurrence. Our earth, although solid, always moving, and earthquakes occur when the pressure is because the movement was already too large to be arrested.

1. Volcanic earthquakes (Gunung Api); This earthquake occurred as a result of magmatic activity, which usually happens before a volcano erupts. If the higher its activity will cause an explosion that also will lead to the occurrence of earthquakes. The earthquake was only felt around the volcano.
2. Tectonic earthquake; earthquake was caused by tectonic activity, namely the shift of the blue plate tectonic plates that have the force of the very small to very large. This earthquake caused much damage or natural disasters on earth, a strong earthquake vibrations can spread to all parts of the earth. Tectonic earthquake caused by perlepasan [power] that occur because of plate tectonic plates shifting like a rubber band is pulled and released abruptly. Power generated by the pressure between the rock known as tectonic disability. The theory of plate tectonics (plate tectonics) explains that the earth consists of several layers of rock, most areas of the crust will drift and float on the layer of snow. Begerak slowly so that the layer-broken and broken to collide with each other. This is what causes the earthquake tektoni.

. Maps of their distribution patterns and rules to follow specific and narrow, which follow the pattern of meetings tectonic plates that make up the earth's crust. In the earth sciences (geology), the theoretical framework of plate tectonics is postulated to explain the phenomena of tectonic earthquake that hit almost the entire region, adjacent to the boundaries of tectonic plates meeting. Example is like a tectonic earthquake that occurred in Yogyakarta, Indonesia on Saturday, May 27, 2006 early morning, at 05:54 pm,

Type of earthquake

1. Earthquakes collision; earthquake is caused by the collision meteor or asteroid that fell to earth, an earthquake of this type are rare
2. Earthquake debris; these earthquakes usually occur in limestone areas or in areas of mining, earthquakes are rare and localized.
3. Artificial earthquake; artificial earthquake is an earthquake caused by human activities, such as dynamite blasting, nuclear or a hammer that slapped onto the surface of the earth.

The cause of earthquakes

Most earthquakes result from the release of energy generated by the pressure made by the moving plates. The longer the pressure was becoming enlarged and eventually reach the state where the pressure can not be arrested again by the edge of the plate. At that moment an earthquake is going to happen.

Earthquakes usually happen at plate boundaries plates. The most severe earthquakes usually occur on the border of the plate compressional and translational. Focus earthquakes in the most likely to occur because the material is squeezed into the lithospheric layer undergoes phase transition at a depth of more than 600 km.

Several other earthquakes can also occur due to the movement of magma inside the volcano. Such an earthquake could be symptoms of an imminent volcanic eruption. Several earthquakes (rarely but) also occur due to deposition a very large mass of water behind dams, such as the Caribbean Dam in Zambia, Africa. Some more (also rare) can also occur due to injection or akstraksi fluid from / into the earth (eg at several geothermal power plants and in the Rocky Mountain Arsenal. Finally, earthquakes can also occur from the detonation of explosives. It can create scientists to monitor nuclear weapons tests conducted secret government. Earthquakes are caused by man like this is also called induced seismicity

Minggu, 10 Januari 2010

Pengenalan Elektronika Dasar


Elektronika adalah ilmu yang mempelajari alat listrik arus lemah yang dioperasikan dengan cara mengontrol aliran elektron atau partikel bermuatan listrik dalam suatu alat seperti komputer, peralatan elektronik, termokopel, semikonduktor, dan lain sebagainya. Ilmu yang mempelajari alat-alat seperti ini merupakan cabang dari ilmu fisika, sementara bentuk desain dan pembuatan sirkuit elektroniknya adalah bagian dari teknik elektro, teknik komputer, dan ilmu/teknik elektronika dan instrumentasi.

Alat-alat yang menggunakan dasar kerja elektronika ini biasanya disebut sebagai peralatan elektronik (electronic devices). Contoh peralatan/ piranti elektronik ini: Tabung Sinar Katoda (Cathode Ray Tube, CRT), radio, TV, perekam kaset, perekam kaset video (VCR), perekam VCD, perekam DVD, kamera video, kamera digital, komputer pribadi desk-top, komputer Laptop, PDA (komputer saku), robot, smart card, dll.


Komponen pasif


* Resistor atau tahanan

* Kapasitor atau kondensator

* Induktor atau kumparan

* Transformator


Komponen aktif


1. Dioda

o Dioda cahaya

o Dioda foto

o Dioda laser

o Diode Zener

2. Dioda Schottky

3. Transistor

o Transistor efek medan

o Transistor bipolar

o Transistor IGBT

o Transistor Darlington

o Transistor foto


Sensor dan aktuator elektromekanik


* Mikrofon

* Speaker

* Strain gauge

* Saklar

* Termistor

* MEMS (Micro Electro Mechanical Systems)


Sirkuit Analog

* Penguat

* Penguat operasi (Operational Amplifier) termasuk umpanbalik negative

* Girator


Sirkuit Digital

* Gerbang logika

(DL, RTL, RTL, DTL, TTL, ECL, CMOS, NMOS, HMOS)

* Flip-flop

* Penghitung biner (Inggris: counter)

* Register

* Multiplekser (MUX) dan DEMUX

* Penjumlah biner (Adder), pengurang biner & Pengganda biner (Multiplier)
* Mikroprosesor

* Mikrokontroler

* ADC, DAC, Atmel AVR‎

* Pemroses sinyal digital (DSP)

* FPGA (Field-Programmable Gate Array), ASIC, FPAA, Embedded-FPGA, CPLD
* Semua jenis komputer digital: komputer super, mainframe, komputer mini, komputer pribadi desktop, laptop, PDA, Smart card, telepon pintar, dll


Alat ukur

* Ohm-meter

* Amper-meter

* Voltmeter

* Multimeter

* Oskiloskop

* Generator fungsi

* Spectrum meter

Sabtu, 02 Januari 2010

Gelombang Elektromagnetik


Saat ini hampir semua orang memiliki peralatan yang satu ini. Dia begitu kecil yang bisa dengan nyaman diletakkan di dalam saku, namun dianggap memiliki fungsi yang sangat besar terutama untuk berkomunikasi. Ya, benda itu adalah sebuah ponsel (telepon seluler). Saat ini ponsel tidak hanya digunakan untuk menelpon saja tetapi juga untuk fungsi lain seperti mengirim dan menerima pesan singkat (sms), mendengarkan musik, atau mengambil foto. Bagaimana perangkat ponsel dapat terhubung dengan perangkat ponsel yang lain padahal mereka saling berjauhan?

Konsep yang bisa menjelaskan fenomena ini adalah konsep gelombang elektromagnetik. Dan, konsep gelombang elektromagnetik ternyata sangat luas tidak hanya berkaitan dengan TV atau ponsel saja, melainkan banyak aplikasi lain yang bisa sering kita temukan sehari-hari di sekitar kita. Aplikasi tersebut meliputi microwave, radio, radar, atau sinar-x.

Dua hukum dasarnya adalah yang menghubungkan gejala kelistrikan dan kemagnetan.

Pertama, arus listrik dapat menghasilkan (menginduksi) medan magnet. Ini dikenal sebagai gejala induksi magnet. Peletak dasar konsep ini adalah Oersted yang telah menemukan gejala ini secara eksperimen dan dirumuskan secara lengkap oleh Ampere. Gejala induksi magnet dikenal sebagai Hukum Ampere.

Michael Faraday, penemu induksi elektromagnetik

Kedua, medan magnet yang berubah-ubah terhadap waktu dapat menghasilkan (menginduksi) medan listrik dalam bentuk arus listrik. Gejala ini dikenal sebagai gejala induksi elektromagnet. Konsep induksi elektromagnet ditemukan secara eksperimen oleh Michael Faraday dan dirumuskan secara lengkap oleh Joseph Henry. Hukum induksi elektromagnet sendiri kemudian dikenal sebagai Hukum Faraday-Henry.

Dari kedua prinsip dasar listrik magnet di atas dan dengan mempertimbangkan konsep simetri yang berlaku dalam hukum alam, James Clerk Maxwell mengajukan suatu usulan. Usulan yang dikemukakan Maxwell, yaitu bahwa jika medan magnet yang berubah terhadap waktu dapat menghasilkan medan listrik maka hal sebaliknya boleh jadi dapat terjadi. Dengan demikian Maxwell mengusulkan bahwa medan listrik yang berubah terhadap waktu dapat menghasilkan (menginduksi) medan magnet. Usulan Maxwell ini kemudian menjadi hukum ketiga yang menghubungkan antara kelistrikan dan kemagnetan.


James Clerk Maxwell peletak dasar teori gelombang elektromagnetik

Jadi, prinsip ketiga adalah medan listrik yang berubah-ubah terhadap waktu dapat menghasilkan medan magnet. Prinsip ketiga ini yang dikemukakan oleh Maxwell pada dasarnya merupakan pengembangan dari rumusan hukum Ampere. Oleh karena itu, prinsip ini dikenal dengan nama Hukum Ampere-Maxwell.

Dari ketiga prinsip dasar kelistrikan dan kemagnetan di atas, Maxwell melihat adanya suatu pola dasar. Medan magnet yang berubah terhadap waktu dapat membangkitkan medan listrik yang juga berubah-ubah terhadap waktu, dan medan listrik yang berubah terhadap waktu juga dapat menghasilkan medan magnet. Jika proses ini berlangsung secara kontinu maka akan dihasilkan medan magnet dan medan listrik secara kontinu. Jika medan magnet dan medan listrik ini secara serempak merambat (menyebar) di dalam ruang ke segala arah maka ini merupakan gejala gelombang. Gelombang semacam ini disebut gelombang elektromagnetik karena terdiri dari medan listrik dan medan magnet yang merambat dalam ruang.
Pada mulanya gelombang elektromagnetik masih berupa ramalan dari Maxwell yang dengan intuisinya mampu melihat adanya pola dasar dalam kelistrikan dan kemagnetan, sebagaimana telah dibahas di atas. Kenyataan ini menjadikan J C Maxwell dianggap sebagai penemu dan perumus dasar-dasar gelombang elektromagnetik.



Teori Maxwell tentang listrik dan magnet meramalkan adanya gelombang elektromgnetik

Ramalan Maxwell tentang gelombang elektromagnetik ternyata benar-benar terbukti. Adalah Heinrich Hertz yang membuktikan adanya gelombang elektromagnetik melalui eksperimennya. Eksperimen Hertz sendiri berupa pembangkitan gelombang elektromagnetik dari sebuah dipol listrik (dua kutub bermuatan listrik dengan muatan yang berbeda, positif dan negatif yang berdekatan) sebagai pemancar dan dipol listrik lain sebagai penerima. Antena pemancar dan penerima yang ada saat ini menggunakan prinsip seperti ini.

Melalui eksperimennya ini Hertz berhasil membangkitkan gelombang elektromagnetik dan terdeteksi oleh bagian penerimanya. Eksperimen ini berhasil membuktikan bahwa gelombang elektromagnetik yang awalnya hanya berupa rumusan teoritis dari Maxwell, benar-benar ada sekaligus mengukuhkan teori Maxwell tentang gelombang elektromagnetik.


diagram skematik eksperimen Hertz


Jumat, 01 Januari 2010

Nuklir Solusi Masalah Energi

Energi nuklir saat ini merupakan energi yang sangat berpengaruh dalam produksi listrik berbagai negara di muka bumi. Kebutuhan yang mendesak akan devisa dalam bentuk hard currency untuk membiayai pembangunan akan memberikan prioritas tinggi pada pemanfaatan sumber daya fosil, terutama minyak dan gas bumi sebagai komoditi ekspor dan mendukung industri petrokimia, khususnya pupuk yang merupakan komoditi strategis dalam pembangunan pertanian.

Apabila untuk memenuhi kebutuhan tersebut berbagai sumber daya tadi terus dieksplorasi, maka dapat dibayangkan betapa keroposnya mental manusia untuk menggapai masa depan yang cerah. Dalam konteks situasi itu, energi nuklir merupakan energi berskala besar yang penyediaannya dapat digunakan untuk jangka panjang. Pemanfaatannya pun selalu bertumpu pada perkembangan teknologi yang terbukti aman, handal. relatif ekonomis, bersih dan berwawasan lingkungan.

Pada periode pertama, penggunaan energi nuklir adalah untuk tujuan militer seperti misalnya sebuah reaktor pendorong kapal selam (submarine) milik AS, yang dikenal dengan nama Nautilus, dan senjata mematikan seperti bom atom yang pernah dijatuhkan di Hiroshima dan Nagasaki pada akhir perang dunia kedua.

Ketika reaktor Calder Hall, yang merupakan reaktor nuklir pertama di Inggris beroperasi secara komersial pada bulan Oktober 1956, reaktor ini menghasilkan listrik untuk disambungkan ke jaringan listrik, sekaligus menghasilkan energi panas yang dibutuhkan oleh pabrik proses olah ulang bahan bakar di wilayah itu. Setelah lebih dari 40 tahun, empat unit reaktor Calder Hall dengan kapasitas masing-masing 50 MWe masih beroperasi sampai sekarang. Sejak saat itu pengembangan reaktor nuklir lebih diperluas, di mana energi panas yang dihasilkan dalam reaktor langsung dimanfaatkan.

Dulu, dengan alasan harga minyak dan gas yang murah, hanya seharga 7 dolar AS per barrel, tidak ada yang mencari energi nuklir. Tapi dengan meningkatnya harga minyak tiap barrel menjadi 18 dollar AS dan terus meningkat hingga saat ini mencapai 100 dolar AS per barrel, energi nuklir jadi jauh lebih menguntungkan. Saat ini terdapat 45 negara di dunia yang menggunakan energi nuklir dan ada sekitar 420 mesin reaktor listrik di dunia. AS sendiri menghasilkan 210 reaktor atom dan memproduksi sekitar 16 persen dari 367 ribu megawatt listrik dunia. Inggris dan anggota kelompok 8+1 juga memakai listrik bertenaga nuklir.

AS dan Inggris menggunakan lebih dari 30 persen listrik dari energi muklir. Dengan demikian, Rusia pun, yang mempunyai 26 persen cadangan energi dunia, lebih dari 30 persen keperluan energinya diperoleh dari energi nuklir. Negara-negara lain secara keseluruhan belum dapat menghasilkan para ahli yang mampu menguasai masalah nuklir untuk produksi reaktor nuklir. Sekarang ini, kebutuhan Iran akan listrik sebanyak 40 ribu megawatt, dan sampai 10 tahun ke depan keperluan itu bisa mencapai ke 80 ribu megawatt.

Dengan generator awal yang bisa menghasilkan energi listrik sebesar 2,5 persen, Iran masih berada di bawah negara-negara maju di Timur. Untuk mendapatkan 1.000 megawatt listrik dari pembakaran energi fosil dalam sehari, 70 juta ton gas dioksida akan mengisi angkasa, yang kemudian menimbulkan masalah-masalah lain seperti polusi. Oleh karena itu, diperlukan energi nuklir.

Pilihan akan pemanfaatan energi nuklir berdasar pada sebuah kebutuhan mendesak akan energi dan kebutuhan hidup manusia dari kebutuhan makanan sampai pada kelistrikan tanpa menjadikan bahan nuklir itu menjadi persenjataan yang dapat mematikan umat manusia. Berbagai manfaat yang diambil oleh ketersediaan bahan bakar dialam khususnya energi nuklir memberi manfaat yang begitu luas bagi kehidupan manusia yang sudah barang tentu ada efek lain yang sedang terus diminimalisasi, yaitu efek dari limbah nuklir.